
 International Journal of Computer Trends and Technology Volume 71 Issue 8, 57-62, August 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I8P109 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Kubernetes and Docker: An Introduction to Container

Orchestration and Management

Sumit Sachdeva

The Scotts Company LLC, Marysville, OH.

Received: 19 June 2023 Revised: 29 July 2023 Accepted: 14 August 2023 Published: 30 August 2023

Abstract - This paper aims to provide an overview of Kubernetes and Docker, two essential technologies that have

revolutionized containerization, orchestration, and management in the world of software development and deployment. We

will explore the core concepts, architecture, and functionalities of both Kubernetes and Docker, highlighting their benefits and

use cases. Furthermore, we will discuss how these technologies work together to enable scalable, resilient, and portable

application deployment on cloud platforms like AWS, GCP, Hana or Azure.

Keywords - Cloud infrastructure, DevOps, Business Intelligence (BI), Microservices, AWS, SAP Hana, Azure, CI/CD.

1. Introduction
The landscape of software development and deployment

has undergone a significant transformation in recent years.

Traditional monolithic applications have given way to

modern, distributed architectures that leverage microservices

and containerization. This shift has been driven by the need

for greater scalability, flexibility, and efficiency in deploying

applications across diverse environments.

Containerization, which enables packaging applications

and their dependencies into lightweight and portable units,

has emerged as a key technology in this paradigm shift.

Docker, a popular containerization platform, has played a

pivotal role in simplifying the process of creating,

distributing, and running containers. By providing a

standardized format for packaging applications, Docker has

made it easier to achieve consistency in development, testing,

and production environments.

However, as the number of containers in a system

grows, managing and orchestrating them becomes

increasingly complex. This is where Kubernetes, an open-

source container orchestration platform, comes into play.

Kubernetes provides a robust set of tools and functionalities

for automating the deployment, scaling, and management of

containerized applications. It tackles challenges such as

container scheduling, load balancing, service discovery, and

high availability, making it possible to run and scale

applications across clusters of machines efficiently.

2. Docker
Docker is an open-source platform that facilitates

containerization, allowing developers to build, package, and

distribute applications as lightweight and portable containers.

It provides a consistent and reproducible environment for

running applications across different systems and

environments.

3. Docker Architecture
Docker architecture consists of several components that

work together to enable containerization and manage

containerized applications. The below figure depicts the

architecture of Docker. The main components of the Docker

are:

3.1. Docker Client

The Docker Client is the primary interface through

which users interact with Docker. It allows users to issue

commands to the Docker daemon and manage Docker

resources. The Docker Client can run on the same host as the

Docker daemon or a remote machine, communicating with

the daemon over a REST API.

3.2. Docker Daemon

The Docker Daemon, also known as the Docker Engine,

is responsible for managing the Docker objects such as

images, containers, networks, and volumes. It listens for

Docker API requests from the Docker Client and handles

tasks like building and running containers, managing

networks, and storing and retrieving images. The Docker

Daemon runs in the background on the host machine.

3.3. Docker Images

Docker Images are the building blocks of containers.

They are read-only templates that contain the application

code, dependencies, libraries, and configuration required to

run an application. Images are created using Dockerfiles,

which specify the steps to build the image. Docker images

are stored in a registry and can be pulled to create containers.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sumit Sachdeva / IJCTT, 71(8), 57-62, 2023

58

Fig. 1 Docker architecture

3.4. Docker Containers

Docker Containers are instances of Docker Images.

Containers are lightweight and isolated environments that

encapsulate an application and its dependencies. Each

container runs as a separate process with its filesystem,

network, and process namespace. Containers can be started,

stopped, and restarted independently of each other.

3.5. Docker Registries

Docker Registries are repositories that store Docker

Images. They can be public or private. The Docker Hub is

the default public registry provided by Docker, where users

can find and download pre-built images. Private registries

can be set up to store and distribute custom or proprietary

images within an organization. Docker images can be pushed

to and pulled from registries.

3.6. Docker Networking

Docker provides networking capabilities that allow

containers to communicate with each other and the outside

world. Each container can be assigned a unique IP address.

Docker supports various networking modes, such as bridge

networks, overlay networks for multi-host communication,

and host networks for direct access to the host's network

stack. Docker also supports creating user-defined networks to

isolate and manage container communication.

3.7. Docker Volumes

 Docker Volumes provide persistent storage for

containers. Volumes are directories or files that exist outside

the container's filesystem but can be accessed by the

container. Volumes allow data to be shared and persisted

across container restarts or when containers are replaced.

Docker supports different types of volumes, including host-

mounted volumes, named volumes, and anonymous volumes.

3.8. Docker Compose

Docker Compose is a tool that defines and manages

multi-container applications. It uses a YAML-based file

format to describe the services, networks, and volumes

needed by an application. Docker Compose simplifies the

orchestration of multiple containers and provides a way to

define and manage the entire application stack.

4. Kubernetes
Kubernetes is an open-source container orchestration

platform that automates the deployment, scaling, and

management of containerized applications. It provides a

robust and scalable framework for managing containers

across a cluster of nodes, offering features such as automated

deployments, scalability, self-healing, service discovery, and

configuration management. With its powerful architecture

and extensive ecosystem, Kubernetes has become the de

facto standard for container orchestration, enabling

organizations to run and manage modern applications at scale

efficiently.

5. Kubernetes Architecture
The architecture of Kubernetes is designed to provide a

scalable and resilient platform for managing containerized

applications. It consists of several key components that work

together to enable the orchestration and management of

containers across a cluster of nodes. Figure (see Figure 2)

depicts the architecture of Kubernetes. The main

components of the Kubernetes are:

Docker

Build

Docker

Pull

Docker

Run

Client

Docker Daemon

Docker Host

Containers

Ubuntu

Open

stack

Images

Ubuntu

Openstack

NGiNX

Registry

Build Pull Run

Sumit Sachdeva / IJCTT, 71(8), 57-62, 2023

59

5.1. Master Node

The Master Node is the control plane of the Kubernetes

cluster. It manages the overall cluster state and orchestrates

containerized applications. The key components of the

Master Node include:

5.1.1. API Server

 Acts as the central management point for the Kubernetes

cluster. It exposes the Kubernetes API, which allows clients

to interact with the cluster.

5.1.2. Scheduler

 Assigns pods (groups of containers) to nodes based on

resource requirements, availability, and other scheduling

policies.

5.1.3. Controller Manager

Manages various controllers that monitor the cluster

state and take actions to maintain the desired state. Examples

include the Node Controller, ReplicaSet Controller, and

Deployment Controller.

Fig. 2 Kubernetes architecture

5.1.4. etcd

 A distributed key-value store that stores the cluster's

configuration data and the state of the cluster.

5.2. Worker Nodes

Worker Nodes (also known as Minions or Worker

Machines) are the worker units in the Kubernetes cluster.

They run the actual containers that make up the applications.

Each worker Node needs to have the following components:

5.2.1. Kubelet

 The primary agent, running on each node, is responsible

for managing and running containers as instructed by the

Master Node.

5.2.2. Container Runtime

 The software is responsible for running containers, such

as Docker, containers, or CRI-O.

5.2.3. Kube-Proxy

 Manages network connectivity and load balancing

between services and pods on the node.

5.3. Pod

A Pod is the smallest deployable unit in Kubernetes. It

represents a group of one or more containers that are

scheduled and run together on the same node. Each Pod has

its unique IP address and shares the same network

namespace, allowing the containers within the Pod to

communicate with each other using localhost. Pods are

ephemeral and can be created, updated, or terminated

independently.

5.4. ReplicaSet and Deployment

A ReplicaSet ensures that a specified number of

identical Pods are running at all times. It helps with scaling

and maintaining the desired number of replicas. A

Deployment is a higher-level abstraction that manages

Kube-Proxy

Pod Pod Pod

cAdvisor Kubelet Kube-Proxy

Pod Pod Pod

Kubelet cAdvisor

Plugin Network (e.g. Flannel, Weavenet, etc)

Developer/

Operator

API Server

Scheduler

Controller Manager

etcd

Users

Sumit Sachdeva / IJCTT, 71(8), 57-62, 2023

60

ReplicaSets. It allows for rolling updates, rollbacks, and

other deployment strategies.

5.5. Service

Service provides a stable network endpoint to access a

group of Pods. It abstracts the underlying Pod IP addresses

and provides load balancing and service discovery.

5.6. Volume

A Volume is an abstraction that allows containers to

store and access data. It provides data persistence and can be

shared among multiple containers within a Pod.

5.7. Ingress

An Ingress is an API object that manages external access

to services within a cluster. It provides routing rules, SSL

termination, and load balancing for incoming traffic.

6. Kubernetes and Docker: Integration and

Synergy
Kubernetes and Docker are two complementary

technologies that work together to provide a powerful

containerization and orchestration solution. Docker is a

containerization platform that allows you to package

applications and their dependencies into portable and isolated

containers.

On the other hand, Kubernetes is a container

orchestration platform that automates the deployment,

scaling, and management of containerized applications

across a cluster of nodes. Here is an overview of the

integration and synergy between Kubernetes and Docker:

6.1. Container Runtime

 Kubernetes is designed to be container-runtime agnostic,

meaning it can work with different container runtimes.

Docker is one of the most popular container runtimes

supported by Kubernetes. Docker provides the underlying

technology to build, run, and manage containers, while

Kubernetes focuses on orchestrating and managing those

containers at scale.

6.2. Container Images

Docker is widely used for building and managing

container images. Kubernetes leverages Docker images as

the basis for deploying applications within its cluster.

Kubernetes pulls Docker images from container registries

and deploys them as pods, the smallest deployable units

within Kubernetes.

6.3. Container Deployment

Kubernetes leverages Docker containers to deploy

applications across a cluster of worker nodes. Docker

images, along with the application configuration, are defined

in Kubernetes manifests (such as YAML files) and deployed

using Kubernetes' declarative approach.

6.4. Container Lifecycle Management

Kubernetes provides advanced container lifecycle

management features, such as scaling, rolling updates, and

self-healing capabilities. Docker containers managed by

Kubernetes can be automatically scaled up or down based on

resource demands, allowing applications to adapt to varying

workloads.

6.5. Container Networking and Storage

Kubernetes handles container networking and storage

abstraction, providing services like load balancing, service

discovery, and persistent volume management. Docker

containers running within Kubernetes pods can communicate

with each other using internal IP addresses, while Kubernetes

manages the network routing and load balancing.

6.6. Container Orchestration

Kubernetes acts as a powerful container orchestration

platform, managing the scheduling, placement, and scaling of

Docker containers across a cluster of nodes. Kubernetes

provides features like rolling updates, automated rollbacks,

and fault tolerance, which enhance the reliability and

availability of applications running in Docker containers.

6.7. Container Images

Docker is widely used for building and managing

container images. Kubernetes leverages Docker images as

the basis for deploying applications within its cluster.

Kubernetes pulls Docker images from container registries

and deploys them as pods, the smallest deployable units

within Kubernetes.

6.8. Container Deployment

Kubernetes leverages Docker containers to deploy

applications across a cluster of worker nodes. Docker images

and the application configuration are defined in Kubernetes

manifests (such as YAML files) and deployed using

Kubernetes' declarative approach.

7. Use Cases
 Kubernetes and Docker together offer a powerful

combination for containerization and orchestration. Here are

some common use cases for using Kubernetes and Docker

together:

7.1. Application Deployment and Management

 Use Docker to containerize your application and its

dependencies, ensuring consistency and portability across

different environments.

Deploy and manage your Docker containers using

Kubernetes, which provides advanced features like automatic

scaling, rolling updates, and self-healing capabilities. E.g.,

deploying and managing SAP HANA with Kubernetes and

Docker offers benefits such as scalability, portability, and

simplified management. By containerizing SAP HANA

Sumit Sachdeva / IJCTT, 71(8), 57-62, 2023

61

using Docker and deploying it in a Kubernetes cluster,

organizations can leverage features like automatic scaling,

high availability, and persistent storage.

7.2. Microservices Architecture

Adopt a microservices architecture by decomposing

your application into smaller, loosely coupled services

running in a separate Docker container. Use Kubernetes to

orchestrate and manage the deployment of these

microservices, allowing for scalability, fault tolerance, and

easy service discovery. E.g., AWS offers a comprehensive

ecosystem for building microservices architectures with

Kubernetes and Docker. Organizations can easily manage

and orchestrate containerized microservices deployments by

leveraging Kubernetes on AWS.

Docker containers provide a standardized packaging

format, ensuring consistency across different environments.

AWS services like Amazon Elastic Kubernetes Service

(EKS) simplify the deployment and management of

Kubernetes clusters, offering scalability, automatic scaling,

and high availability. Integration with AWS cloud-native

services such as Amazon RDS for databases, Amazon S3 for

object storage, and AWS Lambda for serverless computing

enables efficient microservices communication and data

storage. The combination of AWS, Kubernetes, and Docker

provides a powerful solution for creating scalable and

resilient microservices architectures in the cloud.

7.3. Hybrid and Multi-Cloud Deployments

Take advantage of Kubernetes' portability and flexibility

to deploy applications across hybrid and multi-cloud

environments. Use Docker to package your application into

standardized containers easily deployed and managed by

Kubernetes, regardless of the underlying infrastructure.

7.4. CI/CD Pipelines

Integrate Kubernetes and Docker into your CI/CD

(Continuous Integration/Continuous Deployment) pipelines

to automate the build, test, and deployment processes. Use

Docker containers for consistent and reproducible builds and

Kubernetes for deploying and testing applications in different

environments. For e.g., both AWS and Azure offer robust

CI/CD pipeline solutions that seamlessly integrate with

Kubernetes and Docker, enabling efficient application

deployment and continuous delivery. AWS Code Pipeline

and Azure DevOps provide end-to-end automation for

building, testing, and deploying containerized applications to

Kubernetes clusters.

By leveraging Docker containers, developers can

package their applications consistently, ensuring portability

across different environments. Kubernetes acts as the

orchestration layer, allowing for flexible scaling, rolling

updates, and self-healing capabilities. With AWS and zure's

CI/CD pipeline tools, developers can automate the entire

release process, from code commits to deployment to

production, while utilizing the power of Kubernetes and

Docker to achieve reliable and efficient application delivery.

7.5. Resource Optimization

Utilize Kubernetes' container orchestration capabilities

to optimize resource utilization across your infrastructure.

Docker containers can be dynamically scheduled and scaled

by Kubernetes based on resource demands, ensuring efficient

resource allocation and cost optimization. For e.g., with SAP

HANA, you can use Kubernetes and Docker to optimize

resource utilization for your database workloads.

By containerizing SAP HANA using Docker, you can

encapsulate the database software and configurations into

portable and scalable containers. Kubernetes allows you to

allocate resources to SAP HANA containers based on

demand dynamically. You can configure resource limits and

requests for CPU and memory to ensure efficient utilization.

By monitoring SAP HANA's performance metrics and

adjusting resource allocation accordingly, you can optimize

compute resource usage and achieve better performance and

cost efficiency.

7.6. Service Mesh and Networking

Combine Kubernetes and Docker with service mesh

technologies like Istio or Linkerd for advanced networking,

traffic management, and observability within your

microservices architecture.

Docker containers running in Kubernetes can benefit

from service mesh features like load balancing, traffic

encryption, and fine-grained control over service-to-service

communication.

8. Best Practices
 Kubernetes and Docker together offer a powerful

combination for containerization and orchestration. Here are

some best practices for using Kubernetes and Docker

together:

• Use a container registry to store and distribute your

Docker images securely.

• Leverage Kubernetes' declarative approach by defining

application deployments, services, and configurations in

YAML manifests.

• Regularly update and patch your Docker images to

address security vulnerabilities and ensure application

reliability.

• Implement container security practices, such as image

scanning, RBAC (Role-Based Access Control), and

network policies in Kubernetes.

• Monitor and collect metrics from your Kubernetes

cluster and Docker containers to gain insights into

resource usage, performance, and application health.

Sumit Sachdeva / IJCTT, 71(8), 57-62, 2023

62

9. Conclusion
 The integration and synergy between Kubernetes and

Docker provide a powerful solution for containerization and

orchestration of applications. Docker simplifies the process

of creating and managing container images, while

Kubernetes offers advanced container orchestration

capabilities for deploying, scaling, and managing containers

at scale. By leveraging Docker for containerization and

Kubernetes for orchestration, organizations can achieve

portability, scalability, fault tolerance, and automation in

their containerized environments. This integration enables

the efficient management of microservices architectures,

hybrid and multi-cloud deployments, CI/CD pipelines,

resource optimization, and advanced networking capabilities.

The combined use of Kubernetes and Docker empowers

organizations to build and manage modern, scalable

applications effectively while benefiting from the advantages

of both technologies.

References
[1] George Whittaker, Kubernetes vs Docker: Exploring the Synergy in Containerization, 2023. [Online]. Available:

https://www.linuxjournal.com/content/kubernetes-and-docker-exploring-synergy-containerization

[2] Kubernetes Documentation. [Online]. Available: https://kubernetes.io/docs/home/

[3] Docker Overview, 2023. [Online]. Available: https://docs.docker.com/get-started/overview/

[4] What is Kubernetes?, 2020. [Online]. Available: https://www.redhat.com/en/topics/containers/what-is-kubernetes

[5] What is Container Orchestration, 2022. [Online]. Available: https://www.redhat.com/en/topics/containers/what-is-container-

orchestration

[6] Introduction to Container Orchestration: Kubernetes, Docker Swarm and Mesos with Marathon, 2016. [Online]. Available:

https://www.exoscale.com/syslog/container-orchestration/

[7] Microservices Architecture. [Online]. Available: https://www.atlassian.com/microservices/microservices-architecture

[8] Container Orchestration with Kubernetes, 2023. [Online]. Available: https://www.xcubelabs.com/blog/container-orchestration-with-

kubernetes/

[9] Orchestration. [Online]. Available: https://kubebyexample.com/learning-paths/container-fundamentals/introduction-

containers/orchestration

[10] Anca Lordache, How Kubernetes Works Under the Hood with Docker Desktop. [Online]. Available:

https://www.docker.com/blog/how-kubernetes-works-under-the-hood-with-docker-desktop/

[11] Don’t Panic: Kubernetes and Docker, 2020. [Online]. Available: https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-

docker/

[12] Kubernetes vs Docker: Why Not Both?, 2022. [Online]. Available: https://www.ibm.com/blog/kubernetes-vs-docker/

[13] William Boyd, Kubernetes is Deprecating Docker: What you Need to Know, 2023. [Online]. Available:

https://www.pluralsight.com/resources/blog/cloud/kubernetes-is-deprecating-docker-what-you-need-to-know

[14] Vivek Sonar, Running Kubernetes on AWS with EKS, 2021. [Online]. Available: https://www.airplane.dev/blog/running-kubernetes-

on-aws-with-eks

[15] Brenden Burns, Empowering Developer Velocity and Efficiency with Kubernetes, 2020. [Online]. Available:

https://azure.microsoft.com/en-us/blog/empowering-developer-velocity-and-efficiency-with-kubernetes/

[16] Brenden Burns, Build Resilient Applications with Kubernetes on Azure, 2020. [Online]. Available: https://azure.microsoft.com/en-

us/blog/build-resilient-applications-with-kubernetes-on-azure/

[17] Kasper Siig, Running Kubernetes on Azure with AKS, 2021. [Online]. Available: [Online]. Available:

https://www.airplane.dev/blog/running-kubernetes-on-azure-with-aks

[18] Serkan Ozal, Kubernetes CI/CD Pipelines Explained, 2022. [Online]. Available: https://thenewstack.io/kubernetes-ci-cd-pipelines-

explained/

[19] CI/CD with Docker and Kubernetes, 2022. [Online]. Available: https://wpblog.semaphoreci.com/wp-

content/uploads/2020/05/CICD_with_Docker_Kubernetes_Semaphore.pdf

[20] Harshit Mehndiratta, CI/CD Pipeline with Kubernetes, 2021. [Online]. Available: https://www.airplane.dev/blog/cicd-pipelines-with-

kubernetes

[21] Denys van Kempen, At Your Service: SAP HANA in Containers | SAP HANA 2.0 – An Introduction, 2020. [Online]. Available:

https://blogs.sap.com/2020/03/13/at-your-service-sap-hana-2.0-an-introduction-2/

[22] Sarath Chandra Dondapati, Proof of Concept: SAP on Kubernetes – Deployment, Application Scaling Scenarios, 2020. [Online].

Available: https://blogs.sap.com/2020/05/22/proof-of-concept-sap-on-kubernetes-deployment-application-and-database-scaling-

scenarios/

[23] Maxim Afonin, Hana 2.0 Running Inside Docker, 2020. [Online]. Available: https://blogs.sap.com/2020/01/21/hana-2.0-running-

inside-docker/

